Review on Plant Diseases Management Through Gene Pyramiding
Yitagesu Tadesse Demissie
Issue:
Volume 3, Issue 2, December 2019
Pages:
15-20
Received:
3 April 2019
Accepted:
23 September 2019
Published:
6 December 2019
Abstract: Plant diseases have caused severe losses to humans in several ways. The goal of plant disease management is to reduce the economic and aesthetic damage caused by plant diseases. The main objective of this review was to understand about a gene pyramiding concepts with principles &application in disease management. Disease management procedures are frequently determined by disease forecasting or disease modeling rather than on either a calendar or prescription basis. Correct diagnosis of a disease is necessary to identify the pathogen, which is the real target of any disease management program. Improving disease resistance in crops is crucial for stable food production. Quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, can contribute to durable disease resistance (DR). Gene pyramiding holds greater prospects to attain durable resistance against biotic and abiotic stresses in crop. Agene pyramiding involves the use of several genes in a single cultivar to provide a wider base of disease resistance.
Abstract: Plant diseases have caused severe losses to humans in several ways. The goal of plant disease management is to reduce the economic and aesthetic damage caused by plant diseases. The main objective of this review was to understand about a gene pyramiding concepts with principles &application in disease management. Disease management procedures are f...
Show More
Determination of Major Factors Associated with Fungal Contamination of Wheat Under Storage Conditions
Asela Kesho,
Alemayehu Chala,
Elfinesh Shikur
Issue:
Volume 3, Issue 2, December 2019
Pages:
21-26
Received:
21 October 2019
Accepted:
26 November 2019
Published:
7 December 2019
Abstract: Storage fungi are among the major factors causing post-harvest deterioration of crop produce worldwide. However, their association to the major factors that contribute to fungal contamination under storage conditions remains under studied in many parts of Sub-Saharan Africa including Ethiopia. Therefore, the current work was carried out with the objectives to identify major factors that contribute to fungal contamination of wheat grains under storage conditions. For this purpose mycological analysis was carried out using 180 wheat grain samples collected from three major wheat growing zones (Arsi, West Arsi and Bale) of South East Ethiopia. Results of the mycological analysis revealed the contamination of wheat grains by fungal species at different locations and storage time with different frequencies. Fungal contamination of samples indicated that highest incidence was observed at West Arsi (96.98%) followed by Bale (91.76%) and Arsi (86.43%). Fungal contamination also varied with storage period with the highest incidence of (98.62%) followed by (89.78%) and (86.77%) was observed after six months, upon harvest and three months of storage, respectively. The highest fungal incidence (98.62%) was recorded after six months storage of wheat grain. Fungal incidence was highly associated with two of the independent variables, namely, temperature and relative humidity of storage in a logistic regression model. However, there is no significant association (p<0.05) with grain moisture content and storage type of wheat grains under storage conditions.
Abstract: Storage fungi are among the major factors causing post-harvest deterioration of crop produce worldwide. However, their association to the major factors that contribute to fungal contamination under storage conditions remains under studied in many parts of Sub-Saharan Africa including Ethiopia. Therefore, the current work was carried out with the ob...
Show More