The Qualitative and Quantitative Phytochemical Investigation of Crinum Species in Ethiopia
Asnakech Senbeta,
Tesfaye Awas,
Abdella Gure
Issue:
Volume 3, Issue 1, June 2019
Pages:
1-9
Received:
13 May 2019
Accepted:
13 June 2019
Published:
2 July 2019
Abstract: Medicinal plants have a long history of use in most communities all over the world. Plants have the ability to synthesize a wide diversity of chemical compounds that uses to perform important biological functions. Many of Genus Crinum has been broadly used in traditional and ethno-medicines in the world wide. The aims of this study were to investigate the qualitative and quantitative phytochemicals constituents of the four species of the genus Crinum that exists in Ethiopia. All experiments were follow standard procedures. For the purpose of conducting phytochemical analyses on the four species each, three to six bulbs were collected from Field Gene Banks, Botanical Gardens and local fields. The bulb samples were cleaned, dried and crushed into powder. In this study the cold extraction methods were used the extraction solvents such as: n-hexane, ethanol, methanol and water. As a result of the phytochemical analyses, it revealed the presence of alkaloids, flavonoids, saponins, tannins and phenols in Crinum abyssinicum and Crinum bambusetum species. Likewise, it confirmed the presence of alkaloids, flavonoids, phenols and tannins in Crinum macowanii. Moreover, it confirmed the presence of alkaloids, flavonoids, phenols and tannins Crinum ornatum. The chemical constituents revealed the presence of relatively high concentration of alkaloids (9.66%), saponins (19.72%), phenols (10.33%), and tannins (0.61%) in the bulbs of Crinum bambusetum. Similarly, the highest concentration of flavonoids (27.72%) was recorded from the bulbs of Crinum ornatum. As more phytochemicals constituents are being identified and tested, traditional uses of the Crinum are being verified. Accordingly, the evidence on the chemical constituents of the species explains the uses of the plants. Therefore, it is worthwhile to recommend the use of the phytochemical constituents of the species studied for Pharmaceutical use in the treatment of different diseases.
Abstract: Medicinal plants have a long history of use in most communities all over the world. Plants have the ability to synthesize a wide diversity of chemical compounds that uses to perform important biological functions. Many of Genus Crinum has been broadly used in traditional and ethno-medicines in the world wide. The aims of this study were to investig...
Show More
Synthesis of Nitrogen-doped RGO/BaWO4 Nanocomposites with Highly Enhanced Photocatalytic Activity
Mohamed Jaffer Sadiq,
Paruthimal Kalaignan
Issue:
Volume 3, Issue 1, June 2019
Pages:
10-14
Received:
13 June 2019
Accepted:
2 September 2019
Published:
2 September 2019
Abstract: A serious of nitrogen-doped reduced graphene oxide/barium tungstate (NRGO/BaWO4) nanocomposites has been synthesized by microwave method and it was examined by the photocatalytic studies for the degradation of methylene blue (MB) dye under visible light irradiation. The as-synthesized catalysts were confirmed by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Photoluminescence Spectroscopy (PL) and Diffuse Reflectance Spectroscopy (DRS) techniques. The prepared nanocomposites are tested for its performance to the photodegradation of MB dye via illumination of 120 minutes under visible light source. Significantly, the 2.5%-NRGO-BaWO4 nanocomposite indicated that the highest photocatalytic activity under visible light source. The observed photocatalytic performances were ascribed to the synergetic effects of NRGO and BaWO4 and improved photogenerated electron-hole pairs charge separation efficiency. On the basis of the experimental results, we concluded that the new strategy of these types of photocatalytic property of NRGO/BaWO4 based binary nanocomposites materials can be a suitable candidate for the various environmental applications.
Abstract: A serious of nitrogen-doped reduced graphene oxide/barium tungstate (NRGO/BaWO4) nanocomposites has been synthesized by microwave method and it was examined by the photocatalytic studies for the degradation of methylene blue (MB) dye under visible light irradiation. The as-synthesized catalysts were confirmed by X-ray Diffraction (XRD), Scanning El...
Show More