Review Article | | Peer-Reviewed

Factors Enhancing Selective Alcohol-to-Aldehyde Conversion via Heterogeneous Photocatalysts Using Oxygen

Received: 28 September 2024     Accepted: 28 October 2024     Published: 22 November 2024
Views:       Downloads:
Abstract

Heterogeneous photocatalysis is a progressive oxidation technique. An alluring process for synthesizing organic compounds is the selective oxidation of benzyl alcohol into benzaldehyde, a valuable intermediate in various chemical syntheses. This transformation not only showcases the efficiency of photocatalytic processes but also highlights the significance of optimizing reaction conditions and catalyst characteristics to enhance reaction rates. This paper reviewed the influence of various operating and morphological variables (e.g., solvent, temperature, and light intensity) on the reaction rate. The solvothermal synthesis of TiO2 significantly impacted the rate constant, and photo-deposition was a viable alternative when both catalyst and support were available. Among crystalline TiO2 nanostructures (e.g., nanowires, nanotubes, nanofibers, nanosheets, and hollow nanospheres), the hollow structure nanosphere enhanced photo-catalytic activity. Increasing light intensity and temperature enhanced the reaction rate. Higher light intensity and temperature caused better rate constant. Among reviewed catalysts, C-ZnInS4, ZnInS4, Pt-TiO2, RuO2/TiO2NB, 0.95Ru/3DOM BiVO4-Ar-300, Pt/Bi2MoO6-glycerol, Ni-OTiO2, W10O4−32, WO3(7.6)/TiO2, TiO1.966N0.034 and Bi2WO6 with the rate constant of 75.0, 53.75, 57, 46.0, 38.0, 34.0, 33.25, 29.6, 28.0, 27.0 and 22.25 gcat-1 h-1 respectively were selected as a suitable catalyst for alcohols oxidation to aldehyde. Notably, TiO1.966N0.034 and ZnIn2S4 achieved 100% conversion in 4 and 2 hours, respectively, with a high selectivity of >99%, demonstrating excellent photocatalytic activity.

Published in International Journal of Photochemistry and Photobiology (Volume 7, Issue 1)
DOI 10.11648/j.ijpp.20240701.11
Page(s) 1-17
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Alcohol, Aldehyde, Oxidation, Photo-oxidation, Semiconductor, TiO2

References
[1] W. Feng, G. Wu, L. Li, N. Guan, Solvent-free selective photocatalytic oxidation of benzyl alcohol over modified TiO2, Green Chem. 13 (2011) 3265-3272.
[2] V. Augugliaro, H. Kisch, V. Loddo, M. J. López-Muñoz, C. Márquez-Álvarez, G. Palmisano, L. Palmisano, F. Parrino, S. Yurdakal, Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home-prepared titanium dioxide. 1. Selectivity enhancement by aliphatic alcohols, Appl. Catal. A Gen. 349 (2008) 182-188.
[3] T. Rüther, A. M. Bond, W. R. Jackson, Solar light induced photocatalytic oxidation of benzyl alcohol using heteropolyoxometalate catalysts of the type [S2M18O 62]4-, Green Chem. 5 (2003) 364-366.
[4] I. E. Markó, P. R. Giles, M. Tsukazaki, I. Chellè-Regnaut, C. J. Urch, S. M. Brown, Efficient, aerobic, ruthenium-catalyzed oxidation of alcohols into aldehydes and ketones, Chemtracts 11 (1998) 626-628.
[5] K. Ohkubo, K. Suga, S. Fukuzumi, Solvent-free selective photocatalytic oxidation of benzyl alcohol to benzaldehyde by molecular oxygen using 9-phenyl-10-methylacridinium, Chem. Commun. (2006) 2018-2020.
[6] G. Palmisano, S. Yurdakal, V. Augugliaro, V. Loddo, L. Palmisano, Photocatalytic selective oxidation of 4-methoxybenzyl alcohol to aldehyde in aqueous suspension of home-prepared titanium dioxide catalyst, Adv. Synth. Catal. 349 (2007) 964-970.
[7] M. Sleiman, P. Conchon, C. Ferronato, J. M. Chovelon, Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization, Appl. Catal. B Environ. 86 (2009) 159-165.
[8] S. Yurdakal, G. Palmisano, V. Loddo, O. Alagöz, V. Augugliaro, L. Palmisano, Selective photocatalytic oxidation of 4-substituted aromatic alcohols in water with rutile TiO2 prepared at room temperature, Green Chem. 11 (2009) 510-516.
[9] R. Pan, S. Pan, J. Zhou, Y. Wu, Surface-modification of indium tin oxide nanoparticles with titanium dioxide by a nonaqueous process and its photocatalytic properties, Appl. Surf. Sci. 255 (2009) 3642-3647.
[10] H. Song, Z. Liu, Y. Wang, N. Zhang, X. Qu, K. Guo, M. Xiao, H. Gai, Template-free synthesis of hollow TiO2 nanospheres supported Pt for selective photocatalytic oxidation of benzyl alcohol to benzaldehyde, Green Energy Environ. 4 (2019) 278-286.
[11] L. Wang, X. Zhang, L. Yang, C. Wang, H. Wang, Photocatalytic reduction of CO2 coupled with selective alcohol oxidation under ambient conditions, Catal. Sci. Technol. 5 (2015) 4800-4805.
[12] H. Li, R. Liu, S. Lian, Y. Liu, H. Huang, Z. Kang, Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction, Nanoscale 5 (2013) 3289-3297.
[13] X. Pan, N. Zhang, X. Fu, Y. J. Xu, Selective oxidation of benzyl alcohol over TiO2 nanosheets with exposed {0 0 1} facets: Catalyst deactivation and regeneration, Appl. Catal. A Gen. 453 (2013) 181-187.
[14] K. Imamura, H. Tsukahara, K. Hamamichi, N. Seto, K. Hashimoto, H. Kominami, Simultaneous production of aromatic aldehydes and dihydrogen by photocatalytic dehydrogenation of liquid alcohols over metal-loaded titanium(IV) oxide under oxidant- and solvent-free conditions, Appl. Catal. A Gen. 450 (2013) 28-33.
[15] C. J. Li, G. R. Xu, B. Zhang, J. R. Gong, High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over single-crystalline rutile TiO2 nanorods, Appl. Catal. B Environ. 115-116 (2012) 201-208.
[16] V. Augugliaro, L. Palmisano, Green oxidation of alcohols to carbonyl compounds by heterogeneous photocatalysis, ChemSusChem 3 (2010) 1135-1138.
[17] Z. Chen, J. Xu, Z. Ren, Y. He, G. Xiao, High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn2S4 microspheres under visible light irradiation, J. Solid State Chem. 205 (2013) 134-141.
[18] A. Tanaka, K. Hashimoto, H. Kominami, Selective photocatalytic oxidation of aromatic alcohols to aldehydes in an aqueous suspension of gold nanoparticles supported on cerium(iv) oxide under irradiation of green light, Chem. Commun. 47 (2011) 10446-10448.
[19] Q. Wang, M. Zhang, C. Chen, W. Ma, J. Zhao, Photocatalytic aerobic oxidation of alcohols on TiO2: The acceleration effect of a brønsted acid, Angew. Chemie - Int. Ed. 49 (2010) 7976-7979.
[20] Z. Chen, J. Xu, Z. Ren, Y. He, G. Xiao, Low temperature synthesis of ZnIn2S4 microspheres as a visible light photocatalyst for selective oxidation, Catal. Commun. 41 (2013) 83-86.
[21] T. Mitkina, C. Stanglmair, W. Setzer, M. Gruber, H. Kisch, B. König, Visible light mediated homo- and heterocoupling of benzyl alcohols and benzyl amines on polycrystalline cadmium sulfide, Org. Biomol. Chem. 10 (2012) 3556-3561.
[22] S. A. Larson, J. L. Falconer, Initial reaction steps in photocatalytic oxidation of aromatics, Catal. Letters 44 (1997) 57-65.
[23] N. Zhang, S. Liu, X. Fu, Y. J. Xu, A simple strategy for fabrication of “plum-pudding” type Pd@CeO2 semiconductor nanocomposite as a visible-light-driven photocatalyst for selective oxidation, J. Phys. Chem. C 115 (2011) 22901-22909.
[24] S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catal. Today 147 (2009) 1-59.
[25] P. R. Gogate, A. B. Pandit, A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions, Adv. Environ. Res. 8 (2004) 501-551.
[26] A. Ibhadon, P. Fitzpatrick, Heterogeneous Photocatalysis: Recent Advances and Applications, Catalysts 3 (2013) 189-218.
[27] W. Jo, R.J. Tayade, New Generation Energy-Efficient Light Source for Photocatalysis : LEDs for Environmental Applications, Ind. Eng. Chem. Res. 53 (2014) 2073-2084.
[28] C. Pirola, C. L. Bianchi, S. Gatto, S. Ardizzone, G. Cappelletti, Pressurized photo-reactor for the degradation of the scarcely biodegradable DPC cationic surfactant in water, Chem. Eng. J. 225 (2013) 416-422.
[29] W. K. Jo, R. J. Tayade, Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes, Cuihua Xuebao/Chinese J. Catal. 35 (2014) 1781-1792.
[30] C. B. Ong, L. Y. Ng, A. W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications, Renew. Sustain. Energy Rev. 81 (2018) 536-551.
[31] J. L. Capelo-Martínez, P. Ximénez-Embún, Y. Madrid, C. Cámara, Advanced oxidation processes for sample treatment in atomic spectrometry, TrAC - Trends Anal. Chem. 23 (2004) 331-340.
[32] V. Loddo, G. C. Roda, F. Parrino, Kinetic aspects of heterogeneous catalytic versus photocatalytic reactions, Elsevier B. V., 2019.
[33] Y. Zhang, Modeling and Design of Photocatalytic reactors for Air Purification, (2013).
[34] V. Augugliaro, G. Palmisano, L. Palmisano, J. Soria, Heterogeneous photocatalysis and catalysis: An overview of their distinctive features, in: K. K. Marinakis (Ed.), Heterog. Photocatal. Relationships with Heterog. Catal. Perspect., Joseph P. Hayton, Palermo, Italy, 2019: pp. 1-24.
[35] M. C. Blount, J. L. Falconer, Steady-state surface species during toluene photocatalysis, Appl. Catal. B Environ. 39 (2002) 39-50.
[36] J. Marugán, M. J. López-Muñoz, W. Gernjak, S. Malato, Fe/TiO2/pH interactions in solar degradation of imidacloprid with TiO2/SiO2 photocatalysts at pilot-plant scale, Ind. Eng. Chem. Res. 45 (2006) 8900-8908.
[37] M. D. Tzirakis, I. N. Lykakis, G. D. Panagiotou, K. Bourikas, A. Lycourghiotis, C. Kordulis, M. Orfanopoulos, Decatungstate catalyst supported on silica and γ-alumina: Efficient photocatalytic oxidation of benzyl alcohols, J. Catal. 252 (2007) 178-189.
[38] S. Furukawa, A. Tamura, T. Shishido, K. Teramura, T. Tanaka, Solvent-free aerobic alcohol oxidation using Cu/Nb2O5: Green and highly selective photocatalytic system, Appl. Catal. B Environ. 110 (2011) 216-220.
[39] D. Spasiano, L. Del Pilar Prieto Rodriguez, J. C. Olleros, S. Malato, R. Marotta, R. Andreozzi, TiO2/Cu(II) photocatalytic production of benzaldehyde from benzyl alcohol in solar pilot plant reactor, Appl. Catal. B Environ. 136-137 (2013) 56-63.
[40] Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, L. Wu, Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities, Appl. Catal. B Environ. 163 (2015) 135-142.
[41] T. Mallat, A. Baiker, Oxidation of alcohols with molecular oxygen on solid catalysts, Chem. Rev. 104 (2004) 3037-3058.
[42] C. Meng, K. Yang, X. Fu, R. Yuan, Photocatalytic oxidation of benzyl alcohol by homogeneous CuCl2/solvent: A model system to explore the role of molecular oxygen, ACS Catal. 5 (2015) 3760-3766.
[43] S. Higashimoto, Y. Tanaka, R. Ishikawa, S. Hasegawa, M. Azuma, H. Ohue, Y. Sakata, Selective dehydrogenation of aromatic alcohols photocatalyzed by Pd-deposited CdS-TiO2 in aqueous solution using visible light, Catal. Sci. Technol. 3 (2013) 400-403.
[44] L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, CdS-decorated UiO-66(NH2) nanocomposites fabricated by a facile photodeposition process: An efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols, J. Mater. Chem. A 1 (2013) 11473-11482.
[45] D. Spasiano, R. Marotta, I. Di Somma, R. Andreozzi, V. Caprio, Fe(iii)-photocatalytic partial oxidation of benzyl alcohol to benzaldehyde under UV-solar simulated radiation, Photochem. Photobiol. Sci. 12 (2013) 1991-2000.
[46] J. C. Colmenares, R. Luque, Heterogeneous photocatalytic nanomaterials: Prospects and challenges in selective transformations of biomass-derived compounds, Chem. Soc. Rev. 43 (2014) 765-778.
[47] R. Li, H. Kobayashi, J. Guo, J. Fan, Visible-light induced high-yielding benzyl alcohol-to-benzaldehyde transformation over mesoporous crystalline TiO2: A self-adjustable photo-oxidation system with controllable hole-generation, J. Phys. Chem. C 115 (2011) 23408-23416.
[48] S. Higashimoto, R. Shirai, Y. Osano, M. Azuma, H. Ohue, Y. Sakata, H. Kobayashi, Influence of metal ions on the photocatalytic activity: Selective oxidation of benzyl alcohol on iron (III) ion-modified TiO2 using visible light, J. Catal. 311 (2014) 137-143.
[49] Y. Chen, Y. Wang, W. Li, Q. Yang, Q. Hou, L. Wei, L. Liu, F. Huang, M. Ju, Enhancement of photocatalytic performance with the use of noble-metal-decorated TiO2 nanocrystals as highly active catalysts for aerobic oxidation under visible-light irradiation, Appl. Catal. B Environ. 210 (2017) 352-367.
[50] S. R. Lingampalli, U. K. Gautam, C. N. R. Rao, Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1-xZnxS and ZnO/Pt/CdS 1-xSex hybrid nanostructures, Energy Environ. Sci. 6 (2013) 3589-3594.
[51] M. Du, G. Zeng, C. Ye, H. Jin, J. Huang, D. Sun, Q. Li, B. Chen, X. Li, Solvent-free photo-thermocatalytic oxidation of benzyl alcohol on Pd/TiO2 (B) nanowires, Mol. Catal. 483 (2020) 110771.
[52] M. Du, G. Zeng, J. Huang, D. Sun, Q. Li, G. Wang, X. Li, Green Photocatalytic Oxidation of Benzyl Alcohol over Noble-Metal-Modified H2Ti3O7 Nanowires, ACS Sustain. Chem. Eng. 7 (2019) 9717-9726.
[53] D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F. Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight, G. J. Hutchings, Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalyst, Science (80-.). 311 (2006) 362-365.
[54] T. W. Goh, C. Xiao, R. V. Maligal-Ganesh, X. Li, W. Huang, Utilizing mixed-linker zirconium based metal-organic frameworks to enhance the visible light photocatalytic oxidation of alcohol, Chem. Eng. Sci. 124 (2015) 45-51.
[55] M. E. Leblebici, G. D. Stefanidis, T. Van Gerven, Comparison of photocatalytic space-time yields of 12 reactor designs for wastewater treatment, Chem. Eng. Process. Process Intensif. 97 (2015) 106-111.
[56] A. Salinaro, A. V. Emeline, J. Zhao, H. Hidaka, V. K. Ryabchuk, N. Serpone, Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part II: Experimental determination of quantum yields, Pure Appl. Chem. 71 (1999) 303-320.
[57] S. Hashemian, A. Sedrpoushan, F.H. Eshbala, Co-Zeolite Imidazolate Frameworks (ZIF-9@Zeolite) as Heterogen Catalyst for Alcohols Oxidation, Catal. Letters 147 (2017) 196-203.
[58] A. Mobinikhaledi, M. Zendehdel, P. Safari, Effect of substituents and encapsulation on the catalytic activity of copper(II) complexes of two tridentate Schiff base ligands based on thiophene: Benzyl alcohol and phenol oxidation reactions, Transit. Met. Chem. 39 (2014) 431-442.
[59] R. A. Sheldon, I. W. C. E. Arends, H. E. B. Lempers, Liquid phase oxidation at metal ions and complexes in constrained environments, Catal. Today 41 (1998) 387-407.
[60] N. N. Das, P. K. Satapathy, S. C. Dash, P. Mohanty, Synthesis, characterization and catalytic activity of neat and alumina supported trans-(diaqua)(N, N-ethylene-bis-salicylamide)chromium(III): A comparative study, React. Kinet. Mech. Catal. 102 (2011) 367-376.
[61] A. Kozlov, K. Asakura, Y. Iwasawa, Synthesis and characterization of vanadium (IV) complexes in NaY zeolite supercages, Microporous Mesoporous Mater. 21 (1998) 571-579.
[62] G. Marcì, M. Addamo, V. Augugliaro, S. Coluccia, E. García-López, V. Loddo, G. Martra, L. Palmisano, M. Schiavello, Photocatalytic oxidation of toluene on irradiated TiO2: Comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant, J. Photochem. Photobiol. A Chem. 160 (2003) 105-114.
[63] S. Albonetti, R. Mazzoni, F. Cavani, Homogeneous, heterogeneous and nanocatalysis, 2015.
[64] F. A. Z. G. Gassim, A. N. Alkhateeb, F. H. Hussein, Photocatalytic oxidation of benzyl alcohol using pure and sensitized anatase, Desalination 209 (2007) 342-349.
[65] K.H. Leong, P. Monash, S. Ibrahim, P. Saravanan, Solar photocatalytic activity of anatase TiO2 nanocrystals synthesized by non-hydrolitic sol-gel method, Sol. Energy 101 (2014) 321-332.
[66] S. Higashimoto, N. Kitao, N. Yoshida, T. Sakura, M. Azuma, H. Ohue, Y. Sakata, Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation, J. Catal. 266 (2009) 279-285.
[67] M. Xie, X. Dai, S. Meng, X. Fu, S. Chen, Selective oxidation of aromatic alcohols to corresponding aromatic aldehydes using In2S3 microsphere catalyst under visible light irradiation, Chem. Eng. J. 245 (2014) 107-116.
[68] J. Ma, X. Yu, X. Liu, H. Li, X. Hao, J. Li, The preparation and photocatalytic activity of Ag-Pd/g-C3N4 for the coupling reaction between benzyl alcohol and aniline, Mol. Catal. 476 (2019) 110533.
[69] H. She, H. Zhou, L. Li, L. Wang, J. Huang, Q. Wang, Nickel-Doped Excess Oxygen Defect Titanium Dioxide for Efficient Selective Photocatalytic Oxidation of Benzyl Alcohol, ACS Sustain. Chem. Eng. 6 (2018) 11939-11948.
[70] W. Ouyang, E. Kuna, A. Yepez, A.M. Balu, A.A. Romero, J.C. Colmenares, R. Luque, Mechanochemical synthesis of TiO2 nanocomposites as photocatalysts for benzyl alcohol photo-oxidation, Nanomaterials 6 (2016) 1-12.
[71] I. Tamiolakis, I.N. Lykakis, G.S. Armatas, Mesoporous CdS-sensitized TiO2 nanoparticle assemblies with enhanced photocatalytic properties: Selective aerobic oxidation of benzyl alcohols, Catal. Today 250 (2015) 180-186.
[72] M. Bellardita, E.I. García-López, G. Marcì, I. Krivtsov, J.R. García, L. Palmisano, Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4, Appl. Catal. B Environ. 220 (2018) 222-233.
[73] F. Ke, L. Wang, J. Zhu, Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation, Nano Res. 8 (2015) 1834-1846.
[74] M.J. Lima, P.B. Tavares, A.M.T. Silva, C.G. Silva, J.L. Faria, Selective photocatalytic oxidation of benzyl alcohol to benzaldehyde by using metal-loaded g-C3N4 photocatalysts, Catal. Today 287 (2017) 70-77.
[75] M.J. Lima, A.M.T. Silva, C.G. Silva, J.L. Faria, Graphitic carbon nitride modified by thermal, chemical and mechanical processes as metal-free photocatalyst for the selective synthesis of benzaldehyde from benzyl alcohol, J. Catal. 353 (2017) 44-53.
[76] X. Xiao, C. Zheng, M. Lu, L. Zhang, F. Liu, X. Zuo, J. Nan, Deficient Bi24O31Br10 as a highly efficient photocatalyst for selective oxidation of benzyl alcohol into benzaldehyde under blue LED irradiation, Appl. Catal. B Environ. 228 (2018) 142-151.
[77] J. Yu, J. Li, H. Wei, J. Zheng, H. Su, X. Wang, Hydrotalcite-supported gold catalysts for a selective aerobic oxidation of benzyl alcohol driven by visible light, J. Mol. Catal. A Chem. 395 (2014) 128-136.
[78] J. Tong, Q. Zhang, L. Bo, L. Su, Q. Wang, Effectively photocatalytic aerobic oxidation of benzyl alcohol catalyzed by spinel Co-Ni ferrite under visible light irradiation, J. Sol-Gel Sci. Technol. 76 (2015) 19-26.
[79] X. Yang, H. Tao, W.R. Leow, J. Li, Y. Tan, Y. Zhang, T. Zhang, X. Chen, S. Gao, R. Cao, Oxygen-vacancies-engaged efficient carrier utilization for the photocatalytic coupling reaction, J. Catal. 373 (2019) 116-125.
[80] N. Keller, J. Ivanez, J. Highfield, A.M. Ruppert, Photo-/thermal synergies in heterogeneous catalysis: Towards low-temperature (solar-driven) processing for sustainable energy and chemicals, Appl. Catal. B Environ. 296 (2021) 120320.
[81] Y. Zhang, H. Guo, W. Weng, M.L. Fu, The surface plasmon resonance, thermal, support and size effect induced photocatalytic activity enhancement of Au/reduced graphene oxide for selective oxidation of benzylic alcohols, Phys. Chem. Chem. Phys. 19 (2017) 31389-31398.
[82] C. Ren, L. Zhou, Y. Duan, Y. Chen, Synergetic effect of thermo-photocatalytic oxidation of benzene on Pt-TiO2/Ce-MnOx, J. Rare Earths 30 (2012) 1106-1111.
[83] X. Zhang, X. Ke, H. Zhu, Zeolite-supported gold nanoparticles for selective photooxidation of aromatic alcohols under visible-light irradiation, Chem. - A Eur. J. 18 (2012) 8048-8056.
[84] J. Xue, X. Li, S. Ma, P. Xu, M. Wang, Z. Ye, Facile fabrication of BiOCl/RGO/protonated g-C3N4 ternary nanocomposite as Z-scheme photocatalyst for tetracycline degradation and benzyl alcohol oxidation, J. Mater. Sci. 54 (2019) 1275-1290.
[85] X. Dai, M. Xie, S. Meng, X. Fu, S. Chen, Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation, Appl. Catal. B Environ. 158-159 (2014) 382-390.
[86] Z. Wu, X. Huang, H. Zheng, P. Wang, G. Hai, W. Dong, G. Wang, Aromatic heterocycle-grafted NH2-MIL-125(Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light, Appl. Catal. B Environ. 224 (2018) 479-487.
[87] L. Zhang, D. Liu, J. Guan, X. Chen, X. Guo, F. Zhao, T. Hou, X. Mu, Metal-free g-C3N4 photocatalyst by sulfuric acid activation for selective aerobic oxidation of benzyl alcohol under visible light, Mater. Res. Bull. 59 (2014) 84-92.
[88] B. Ma, E. Huang, G. Wu, W. Dai, N. Guan, L. Li, Fabrication of WO2.72/RGO nano-composites for enhanced photocatalysis, RSC Adv. 7 (2017) 2606-2614.
[89] J. Ran, T. Y. Ma, G. Gao, X. W. Du, S. Z. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production, Energy Environ. Sci. 8 (2015) 3708-3717.
[90] J. Zhu, J. Yang, Z. F. Bian, J. Ren, Y. M. Liu, Y. Cao, H. X. Li, H. Y. He, K. N. Fan, Nanocrystalline anatase TiO2 photocatalysts prepared via a facile low temperature nonhydrolytic sol-gel reaction of TiCl4 and benzyl alcohol, Appl. Catal. B Environ. 76 (2007) 82-91.
[91] Z. Chen, Y. Wu, J. Xu, F. Wang, J. Wang, J. Zhang, Z. Ren, Y. He, G. Xiao, Synthesis of C-coated ZnIn2S4 nanocomposites with enhanced visible light photocatalytic selective oxidation activity, J. Mol. Catal. A Chem. 401 (2015) 66-72.
[92] B. Zhang, J. Li, Y. Gao, R. Chong, Z. Wang, L. Guo, X. Zhang, C. Li, To boost photocatalytic activity in selective oxidation of alcohols on ultrathin Bi2MoO6 nanoplates with Pt nanoparticles as cocatalyst, J. Catal. 345 (2017) 96-103.
[93] K. Jing, W. Ma, Y. Ren, J. Xiong, B. Guo, Y. Song, S. Liang, L. Wu, Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol, Appl. Catal. B Environ. 243 (2019) 10-18.
[94] J. Tian, X. Hu, N. Wei, Y. Zhou, X. Xu, H. Cui, H. Liu, RuO2/TiO2 nanobelt heterostructures with enhanced photocatalytic activity and gas-phase selective oxidation of benzyl alcohol, Sol. Energy Mater. Sol. Cells 151 (2016) 7-13.
[95] P. Zhang, P. Wu, S. Bao, Z. Wang, B. Tian, J. Zhang, Synthesis of sandwich-structured AgBr@Ag@TiO2 composite photocatalyst and study of its photocatalytic performance for the oxidation of benzyl alcohols to benzaldehydes, Chem. Eng. J. 306 (2016) 1151-1161.
[96] J. Tripathy, G. Loget, M. Altomare, P. Schmuki, Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde Under Visible Light, J. Nanosci. Nanotechnol. 16 (2016) 5353-5358.
[97] A. Kunene, T. van Heerden, T. G. Gambu, E. van Steen, Liquid Phase, Aerobic Oxidation of Benzyl Alcohol over the Catalyst System (Pt/TiO2+H2O), ChemCatChem 12 (2020) 4760-4764.
[98] X. Ye, X. Dai, S. Meng, X. Fu, S. Chen, A Novel CdS/g-C3N4 Composite Photocatalyst: Preparation, Characterization and Photocatalytic Performance with Different Reaction Solvents under Visible Light Irradiation, Chinese J. Chem. 35 (2017) 217-225.
[99] X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO 2 into solar fuels, Chem. Rev. 119 (2019) 3962-4179.
[100] Y. Jing, J. Jiang, B. Yan, S. Lu, J. Jiao, H. Xue, G. Yang, G. Zheng, Activation of dioxygen by cobaloxime and nitric oxide for efficient TEMPO-catalyzed oxidation of alcohols, Adv. Synth. Catal. 353 (2011) 1146-1152.
[101] M. Zhang, Q. Wang, C. Chen, L. Zang, W. Ma, J. Zhao, Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: Oxygen isotope studies, Angew. Chemie - Int. Ed. 48 (2009) 6081-6084.
[102] S. Narayanan, J. Judith Vijaya, S. Sivasanker, L. John Kennedy, A. Ariharan, Enhanced selectivity to benzaldehyde in the liquid phase oxidation of benzyl alcohol using nanocrystalline ZSM-5 zeolite catalyst, J. Porous Mater. 21 (2014) 633-641.
[103] H. Hao, L. Zhang, W. Wang, S. Qiao, X. Liu, Photocatalytic Hydrogen Evolution Coupled with Efficient Selective Benzaldehyde Production from Benzyl Alcohol Aqueous Solution over ZnS-NixSy Composites, ACS Sustain. Chem. Eng. 7 (2019) 10501-10508.
[104] H. She, L. Li, Y. Sun, L. Wang, J. Huang, G. Zhu, Q. Wang, Facile preparation of mixed-phase CdS and its enhanced photocatalytic selective oxidation of benzyl alcohol under visible light irradiation, Appl. Surf. Sci. 457 (2018) 1167-1173.
[105] N. Zhang, X. Fu, Y. J. Xu, A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst, J. Mater. Chem. 21 (2011) 8152-8158.
[106] H. H. Monfared, V. Abbasi, A. Rezaei, M. Ghorbanloo, A. Aghaei, A heterogenized vanadium oxo-aroylhydrazone catalyst for efficient and selective oxidation of hydrocarbons with hydrogen peroxide, Transit. Met. Chem. 37 (2012) 85-92.
[107] Z. Zhang, Z. Luo, Z. Yang, S. Zhang, Y. Zhang, Y. Zhou, X. Wang, X. Fu, Band-gap tuning of N-doped TiO2 photocatalysts for visible-light-driven selective oxidation of alcohols to aldehydes in water, RSC Adv. 3 (2013) 7215-7218.
[108] N. mati-Ghods, N. S. Featherstone, E. van Steen, Kinetic Analysis of Solvent Effect in the Photocatalytic, Aerobic Oxidation of Benzyl Alcohol over P25, J. Photocatal. 4 (2024).
[109] G. Palmisano, E. García-López, G. Marcì, V. Loddo, S. Yurdakal, V. Augugliaro, L. Palmisano, Advances in selective conversions by heterogeneous photocatalysis, Chem. Commun. 46 (2010) 7074-7089.
[110] N. Mizuno, M. Misono, Heterogeneous catalysis, Chem. Rev. 98 (1998) 199-217.
[111] K. T. V. Rao, P. S. N. Rao, P. Nagaraju, P. S. S. Prasad, N. Lingaiah, Room temperature selective oxidation of toluene over vanadium substituted polyoxometalate catalysts, J. Mol. Catal. A Chem. 303 (2009) 84-89.
[112] N. Dimitratos, A. Villa, D. Wang, F. Porta, D. Su, L. Prati, Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols, J. Catal. 244 (2006) 113-121.
[113] A. Villa, D. Wang, N. Dimitratos, D. Su, V. Trevisan, L. Prati, Pd on carbon nanotubes for liquid phase alcohol oxidation, Catal. Today 150 (2010) 8-15.
[114] J. Che, M. Hao, W. Yi, H. Kobayashi, Y. Zhou, L. Xiao, J. Fan, Selective suppression of toluene formation in solvent-free benzyl alcohol oxidation using supported Pd-Ni bimetallic nanoparticles, Cuihua Xuebao/Chinese J. Catal. 38 (2017) 1870-1879.
[115] C. E. Chan-Thaw, A. Savara, A. Villa, Selective benzyl alcohol oxidation over pd catalysts, Catalysts 8 (2018) 1-21.
[116] M. Besson, P. Gallezot, Selective oxidation of alcohols and aldehydes on metal catalysts, Catal. Today 57 (2000) 127-141.
[117] O. H. Laguna, M. A. Centeno, F. Romero-Sarria, J. A. Odriozola, Oxidation of CO over gold supported on Zn-modified ceria catalysts, Catal. Today 172 (2011) 118-123.
[118] E. Lam, J. H. T. Luong, Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals, ACS Catal. 4 (2014) 3393-3410.
[119] S. Ouidri, H. Khalaf, Synthesis of benzaldehyde from toluene by a photocatalytic oxidation using TiO2-pillared clays, J. Photochem. Photobiol. A Chem. 207 (2009) 268-273.
[120] S. Kitano, A. Tanaka, K. Hashimoto, H. Kominami, Selective oxidation of alcohols in aqueous suspensions of rhodium ion-modified TiO2 photocatalysts under irradiation of visible light, Phys. Chem. Chem. Phys. 16 (2014) 12554-12559.
[121] S. R. Pradhan, V. Nair, D. A. Giannakoudakis, D. Lisovytskiy, J. C. Colmenares, Design and development of TiO2 coated microflow reactor for photocatalytic partial oxidation of benzyl alcohol, Mol. Catal. 486 (2020) 110884.
[122] S. Li, J. Cai, X. Wu, B. Liu, Q. Chen, Y. Li, F. Zheng, TiO 2 @Pt@CeO 2 nanocomposite as a bifunctional catalyst for enhancing photo-reduction of Cr (VI) and photo-oxidation of benzyl alcohol, J. Hazard. Mater. 346 (2018) 52-61.
[123] S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro, L. Palmisano, Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water, J. Am. Chem. Soc. 130 (2008) 1568-1569.
[124] J. L. Ferry, W. H. Glaze, Photocatalytic reduction of nitro organics over illuminated titanium dioxide: Role of the TiO2 surface, Langmuir 14 (1998) 3551-3555.
[125] X. Chen, Z. Zheng, X. Ke, E. Jaatinen, T. Xie, D. Wang, C. Guo, J. Zhao, H. Zhu, Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation, Green Chem. 12 (2010) 414-419.
[126] A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev. 95 (1995) 735-758.
[127] S. Furukawa, Y. Ohno, T. Shishido, K. Teramura, T. Tanaka, Selective amine oxidation using Nb2O5 photocatalyst and O2, ACS Catal. 1 (2011) 1150-1153.
[128] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Understanding TiO2 photocatalysis: Mechanisms and materials, Chem. Rev. 114 (2014) 9919-9986.
[129] S. Higashimoto, N. Suetsugu, M. Azuma, H. Ohue, Y. Sakata, Efficient and selective oxidation of benzylic alcohol by O2 into corresponding aldehydes on a TiO2 photocatalyst under visible light irradiation: Effect of phenyl-ring substitution on the photocatalytic activity, J. Catal. 274 (2010) 76-83.
[130] C. Zheng, G. He, X. Xiao, M. Lu, H. Zhong, X. Zuo, J. Nan, Selective photocatalytic oxidation of benzyl alcohol into benzaldehyde with high selectivity and conversion ratio over Bi4O5Br2 nanoflakes under blue LED irradiation, Appl. Catal. B Environ. 205 (2017) 201-210.
[131] E. Oliveros, O. Legrini, M. Hohl, T. Müller, A. M. Braun, Industrial waste water treatment: Large scale development of a light-enhanced Fenton reaction, Chem. Eng. Process. Process Intensif. 36 (1997) 397-405.
[132] R. Long, N. J. English, Synergistic effects on band gap-narrowing in titania by codoping from first-principles calculations, Chem. Mater. 22 (2010) 1616-1623.
[133] G. Wu, T. Nishikawa, B. Ohtani, A. Chen, Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response, Chem. Mater. 19 (2007) 4530-4537.
[134] J. Sun, L. Qiao, S. Sun, G. Wang, Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation, J. Hazard. Mater. 155 (2008) 312-319.
[135] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal. A Gen. 265 (2004) 115-121.
[136] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, J. Phys. Chem. B 107 (2003) 5483-5486.
[137] J. T. Chang, Y. F. Lai, J. L. He, Photocatalytic performance of chromium or nitrogen doped arc ion plated-TiO2 films, Surf. Coatings Technol. 200 (2005) 1640-1644.
[138] X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang, K. Klabunde, Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping, J. Catal. 260 (2008) 128-133.
[139] D. Chen, Z. Jiang, J. Geng, Q. Wang, D. Yang, Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity, Ind. Eng. Chem. Res. 46 (2007) 2741-2746.
[140] E. M. Neville, M. J. Mattle, D. Loughrey, B. Rajesh, M. Rahman, J. M. D. MacElroy, J. A. Sullivan, K. R. Thampi, Carbon-doped TiO 2 and carbon, tungsten-codoped TiO 2 through sol-gel processes in the presence of melamine borate: Reflections through photocatalysis, J. Phys. Chem. C 116 (2012) 16511-16521.
[141] T. Ohno, Z. Miyamoto, K. Nishijima, H. Kanemitsu, F. Xueyuan, Sensitization of photocatalytic activity of S- or N-doped TiO2 particles by adsorbing Fe3+ cations, Appl. Catal. A Gen. 302 (2006) 62-68.
[142] Y. Shen, T. Xiong, T. Li, K. Yang, Tungsten and nitrogen co-doped TiO2 nano-powders with strong visible light response, Appl. Catal. B Environ. 83 (2008) 177-185.
[143] T. Ohno, T. Mitsui, M. Matsumura, Photocatalytic activity of S-doped TiO2 photocatalyst under visible light, Chem. Lett. 32 (2003) 364-365.
[144] J. Virkutyte, B. Baruwatix, R. S. Varma, Visible light induced photobleaching of methylene blue over melamine-doped TiO2 nanocatalyst, Nanoscale 2 (2010) 1109-1111.
[145] J. Virkutyte, R. S. Varma, Fabrication and visible light photocatalytic activity of a novel Ag/TiO2-xNx nanocatalyst, New J. Chem. 34 (2010) 1094-1096.
[146] K. S. Rane, R. Mhalsiker, S. Yin, T. Sato, K. Cho, E. Dunbar, P. Biswas, Visible light-sensitive yellow TiO2-xNx and Fe-N co-doped Ti1-yFeyO2-xNx anatase photocatalysts, J. Solid State Chem. 179 (2006) 3033-3044.
[147] H. Hao, J. Zhang, The study of Iron (III) and nitrogen co-doped mesoporous TiO2 photocatalysts: synthesis, characterization and activity, Microporous Mesoporous Mater. 121 (2009) 52-57.
[148] Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, Preparation, photocatalytic activity, and mechanism of nano-TiO2 Co-doped with nitrogen and iron (III), J. Phys. Chem. C 111 (2007) 10618-10623.
[149] M. E. Kurtoglu, T. Longenbach, K. Sohlberg, Y. Gogotsi, Strong coupling of Cr and N in Cr-N-doped TiO2 and its effect on photocatalytic activity, J. Phys. Chem. C 115 (2011) 17392-17399.
[150] W. Zhu, X. Qiu, V. Iancu, X. Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, H. M. Meyer, M. P. Paranthaman, G. M. Stocks, H. H. Weitering, B. Gu, G. Eres, Z. Zhang, Band gap narrowing of titanium oxide semiconductors by noncompensated anion-Cation codoping for enhanced visible-Light photoactivity, Phys. Rev. Lett. 103 (2009) 1-4.
[151] Y. Yin, W. Zhang, S. Chen, S. Yu, Theoretical and experimental study on the electronic structure and optical absorption properties of nitrogen-doped nanometer TiO2, Mater. Chem. Phys. 113 (2009) 982-985.
[152] C. C. Yen, D. Y. Wang, L. S. Chang, H. C. Shih, Characterization and photocatalytic activity of Fe- and N-co-deposited TiO2 and first-principles study for electronic structure, J. Solid State Chem. 184 (2011) 2053-2060.
[153] Z. Liu, Y. Wang, W. Chu, Z. Li, C. Ge, Characteristics of doped TiO2 photocatalysts for the degradation of methylene blue waste water under visible light, J. Alloys Compd. 501 (2010) 54-59.
[154] H. Sun, Y. Bai, W. Jin, N. Xu, Visible-light-driven TiO2 catalysts doped with low-concentration nitrogen species, Sol. Energy Mater. Sol. Cells 92 (2008) 76-83.
[155] G. Wu, A. Chen, Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications, J. Photochem. Photobiol. A Chem. 195 (2008) 47-53.
[156] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science (80-.). 293 (2001) 269-271.
[157] X. Chen, Y. Low, A. C. S. Samia, C. Burda, J. L. Gole, Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder, Adv. Funct. Mater. 15 (2005) 41-49.
[158] S. Livraghi, M. R. Chierotti, E. Giamello, G. Magnacca, M. C. Paganini, G. Cappelletti, C. L. Bianchi, Nitrogen-doped titanium dioxide active in photocatalytic reactions with visible light: A multi-technique characterization of differently prepared materials, J. Phys. Chem. C 112 (2008) 17244-17252.
[159] C. Di Valentin, G. Pacchioni, A. Selloni, Origin of the different photoactivity of N-doped anatase and rutile TiO2, Phys. Rev. B - Condens. Matter Mater. Phys. 70 (2004) 1-4.
[160] T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanaka, T. Sumita, K. Asai, Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies, J. Appl. Phys. 93 (2003) 5156-5160.
[161] L. Mi, Y. Zhang, P. N. Wang, First-principles study of the hydrogen doping influence on the geometric and electronic structures of N-doped TiO2, Chem. Phys. Lett. 458 (2008) 341-345.
[162] S. Hu, A. Wang, X. Li, H. Löwe, Hydrothermal synthesis of well-dispersed ultrafine N-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light, J. Phys. Chem. Solids 71 (2010) 156-162.
[163] M. Khan, J. Xu, N. Chen, W. Cao, First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO 2, J. Alloys Compd. 513 (2012) 539-545.
[164] V. Photocatalyst, (Sulfur, Nitrogen ) -Codoped Rutile-Titanium Dioxide as a, 1584 (2004) 2003-2005
[165] V. N. Kuznetsov, N. Serpone, Photoinduced coloration and photobleaching of titanium dioxide in TiO 2/polymer compositions upon UV- And visible-light excitation of color centers’ absorption bands: Direct experimental evidence negating band-gap narrowing in anion-/cation-doped TiO2s, J. Phys. Chem. C 111 (2007) 15277-15288.
[166] R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects, Chem. Rev. 114 (2014) 9824-9852.
[167] D. Li, H. Haneda, S. Hishita, N. Ohashi, Visible-light-driven N-F-codoped TiO2 photocatalysts. 1. Synthesis by spray pyrolysis and surface characterization, Chem. Mater. 17 (2005) 2588-2595.
[168] D. Li, H. Haneda, S. Hishita, N. Ohashi, Visible-light-driven N-F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification, Chem. Mater. 17 (2005) 2596-2602.
[169] J. Gomes, J. Lincho, E. Domingues, R. M. Quinta-Ferreira, R. C. Martins, N-TiO2 photocatalysts: A review of their characteristics and capacity for emerging contaminants removal, Water (Switzerland) 11 (2019) 1-35.
[170] S. Yurdakal, V. Augugliaro, V. Loddo, G. Palmisano, L. Palmisano, Enhancing selectivity in photocatalytic formation of p-anisaldehyde in aqueous suspension under solar light irradiation via TiO2 N-doping, New J. Chem. 36 (2012) 1762-1768.
[171] H. Lu, J. Yao, Recent Advances in Liquid-phase Heterogeneous Photocatalysis for Organic Synthesis by Selective Oxidation, Curr. Org. Chem. 18 (2014) 1365-1372.
[172] Y. Q. Wang, X. J. Yu, D. Z. Sun, Synthesis, characterization, and photocatalytic activity of TiO2-xNx nanocatalyst, J. Hazard. Mater. 144 (2007) 328-333.
[173] A. Molinari, A. Maldotti, R. Amadelli, Heterogeneous Photocatalytic Systems for Partial and Selective Oxidation of Alcohols and Polyols, Curr. Org. Chem. 17 (2013) 2382-2405.
[174] D. Tsukamoto, M. Ikeda, Y. Shiraishi, T. Hara, N. Ichikuni, S. Tanaka, T. Hirai, Selective photocatalytic oxidation of alcohols to aldehydes in water by TiO2 partially coated with WO3, Chem. - A Eur. J. 17 (2011) 9816-9824.
[175] K. Zhang, Y. Liu, J. Deng, L. Jing, W. Pei, Z. Han, X. Zhang, H. Dai, Ru Nanoparticles Supported on Oxygen-Deficient 3DOM BiVO4: High-Performance Catalysts for the Visible-Light-Driven Selective Oxidation of Benzyl Alcohol, ChemCatChem 11 (2019) 6398-6407.
[176] Y. Zhang, Y. J. Xu, Bi2WO6: A highly chemoselective visible light photocatalyst toward aerobic oxidation of benzylic alcohols in water, RSC Adv. 4 (2014) 2904-2910.
[177] J. Zou, Z. Wang, W. Guo, B. Guo, Y. Yu, L. Wu, Photocatalytic selective oxidation of benzyl alcohol over ZnTi-LDH: The effect of surface OH groups, Appl. Catal. B Environ. 260 (2020) 118185.
[178] J. Tian, J. Li, N. Wei, X. Xu, H. Cui, H. Liu, Ru nanoparticles decorated TiO2 nanobelts: A heterostructure towards enhanced photocatalytic activity and gas-phase selective oxidation of benzyl alcohol, Ceram. Int. 42 (2016) 1611-1617.
[179] R. Khan, S. Javed, M. Islam, Hierarchical Nanostructures of Titanium Dioxide: Synthesis and Applications, in: D. Yang (Ed.), Titan. Dioxide Mater. a Sustain. Environ., Illustrate, BoD - Books on Demand, 2018: p. 39.
[180] Y. Chen, W. Li, J. Wang, Y. Gan, L. Liu, M. Ju, Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity, Appl. Catal. B Environ. 191 (2016) 94-105.
[181] X. F. Zhang, Z. Wang, Y. Zhong, J. Qiu, X. Zhang, Y. Gao, X. Gu, J. Yao, TiO2 nanorods loaded with Au-Pt alloy nanoparticles for the photocatalytic oxidation of benzyl alcohol, J. Phys. Chem. Solids 126 (2019) 27-32.
[182] S. Sarina, S. Bai, Y. Huang, C. Chen, J. Jia, E. Jaatinen, G. A. Ayoko, Z. Bao, H. Zhu, Visible light enhanced oxidant free dehydrogenation of aromatic alcohols using Au-Pd alloy nanoparticle catalysts, Green Chem. 16 (2014) 331-341.
Cite This Article
  • APA Style

    Nosrati-Ghods, N., Steen, E. V. (2024). Factors Enhancing Selective Alcohol-to-Aldehyde Conversion via Heterogeneous Photocatalysts Using Oxygen. International Journal of Photochemistry and Photobiology, 7(1), 1-17. https://doi.org/10.11648/j.ijpp.20240701.11

    Copy | Download

    ACS Style

    Nosrati-Ghods, N.; Steen, E. V. Factors Enhancing Selective Alcohol-to-Aldehyde Conversion via Heterogeneous Photocatalysts Using Oxygen. Int. J. Photochem. Photobiol. 2024, 7(1), 1-17. doi: 10.11648/j.ijpp.20240701.11

    Copy | Download

    AMA Style

    Nosrati-Ghods N, Steen EV. Factors Enhancing Selective Alcohol-to-Aldehyde Conversion via Heterogeneous Photocatalysts Using Oxygen. Int J Photochem Photobiol. 2024;7(1):1-17. doi: 10.11648/j.ijpp.20240701.11

    Copy | Download

  • @article{10.11648/j.ijpp.20240701.11,
      author = {Nosaibeh Nosrati-Ghods and Eric Van Steen},
      title = {Factors Enhancing Selective Alcohol-to-Aldehyde Conversion via Heterogeneous Photocatalysts Using Oxygen
    },
      journal = {International Journal of Photochemistry and Photobiology},
      volume = {7},
      number = {1},
      pages = {1-17},
      doi = {10.11648/j.ijpp.20240701.11},
      url = {https://doi.org/10.11648/j.ijpp.20240701.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijpp.20240701.11},
      abstract = {Heterogeneous photocatalysis is a progressive oxidation technique. An alluring process for synthesizing organic compounds is the selective oxidation of benzyl alcohol into benzaldehyde, a valuable intermediate in various chemical syntheses. This transformation not only showcases the efficiency of photocatalytic processes but also highlights the significance of optimizing reaction conditions and catalyst characteristics to enhance reaction rates. This paper reviewed the influence of various operating and morphological variables (e.g., solvent, temperature, and light intensity) on the reaction rate. The solvothermal synthesis of TiO2 significantly impacted the rate constant, and photo-deposition was a viable alternative when both catalyst and support were available. Among crystalline TiO2 nanostructures (e.g., nanowires, nanotubes, nanofibers, nanosheets, and hollow nanospheres), the hollow structure nanosphere enhanced photo-catalytic activity. Increasing light intensity and temperature enhanced the reaction rate. Higher light intensity and temperature caused better rate constant. Among reviewed catalysts, C-ZnInS4, ZnInS4, Pt-TiO2, RuO2/TiO2NB, 0.95Ru/3DOM BiVO4-Ar-300, Pt/Bi2MoO6-glycerol, Ni-OTiO2, W10O4−32, WO3(7.6)/TiO2, TiO1.966N0.034 and Bi2WO6 with the rate constant of 75.0, 53.75, 57, 46.0, 38.0, 34.0, 33.25, 29.6, 28.0, 27.0 and 22.25 gcat-1 h-1 respectively were selected as a suitable catalyst for alcohols oxidation to aldehyde. Notably, TiO1.966N0.034 and ZnIn2S4 achieved 100% conversion in 4 and 2 hours, respectively, with a high selectivity of >99%, demonstrating excellent photocatalytic activity.
    },
     year = {2024}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Factors Enhancing Selective Alcohol-to-Aldehyde Conversion via Heterogeneous Photocatalysts Using Oxygen
    
    AU  - Nosaibeh Nosrati-Ghods
    AU  - Eric Van Steen
    Y1  - 2024/11/22
    PY  - 2024
    N1  - https://doi.org/10.11648/j.ijpp.20240701.11
    DO  - 10.11648/j.ijpp.20240701.11
    T2  - International Journal of Photochemistry and Photobiology
    JF  - International Journal of Photochemistry and Photobiology
    JO  - International Journal of Photochemistry and Photobiology
    SP  - 1
    EP  - 17
    PB  - Science Publishing Group
    SN  - 2640-429X
    UR  - https://doi.org/10.11648/j.ijpp.20240701.11
    AB  - Heterogeneous photocatalysis is a progressive oxidation technique. An alluring process for synthesizing organic compounds is the selective oxidation of benzyl alcohol into benzaldehyde, a valuable intermediate in various chemical syntheses. This transformation not only showcases the efficiency of photocatalytic processes but also highlights the significance of optimizing reaction conditions and catalyst characteristics to enhance reaction rates. This paper reviewed the influence of various operating and morphological variables (e.g., solvent, temperature, and light intensity) on the reaction rate. The solvothermal synthesis of TiO2 significantly impacted the rate constant, and photo-deposition was a viable alternative when both catalyst and support were available. Among crystalline TiO2 nanostructures (e.g., nanowires, nanotubes, nanofibers, nanosheets, and hollow nanospheres), the hollow structure nanosphere enhanced photo-catalytic activity. Increasing light intensity and temperature enhanced the reaction rate. Higher light intensity and temperature caused better rate constant. Among reviewed catalysts, C-ZnInS4, ZnInS4, Pt-TiO2, RuO2/TiO2NB, 0.95Ru/3DOM BiVO4-Ar-300, Pt/Bi2MoO6-glycerol, Ni-OTiO2, W10O4−32, WO3(7.6)/TiO2, TiO1.966N0.034 and Bi2WO6 with the rate constant of 75.0, 53.75, 57, 46.0, 38.0, 34.0, 33.25, 29.6, 28.0, 27.0 and 22.25 gcat-1 h-1 respectively were selected as a suitable catalyst for alcohols oxidation to aldehyde. Notably, TiO1.966N0.034 and ZnIn2S4 achieved 100% conversion in 4 and 2 hours, respectively, with a high selectivity of >99%, demonstrating excellent photocatalytic activity.
    
    VL  - 7
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Sections